Starke Niederschläge können Naturkatastrophen wie Hochwasser oder Erdrutsche auslösen.
Um die durch den Klimawandel zu erwartenden Änderungen der Häufigkeit dieser Extreme vorherzusagen, sind globale Klimamodelle notwendig. In einer Studie zeigen Forschende des Karlsruher Instituts für Technologie (KIT) erstmals eine Methode auf Basis Künstlicher Intelligenz (KI), mit der sich die Genauigkeit der von globalen Klimamodellen erzeugten groben Niederschlagsfelder erhöhen lässt.
Ihnen gelang es, die räumliche Auflösung von Niederschlagsfeldern von 32 auf zwei Kilometer und die zeitliche von einer Stunde auf zehn Minuten zu verbessern. Diese erhöhte Auflösung ist notwendig, um das zukünftig häufigere Auftreten von lokalen Starkniederschlägen und die dadurch bedingten Naturkatastrophen besser vorhersagen zu können. (DOI10.1029/2023EA002906)
Viele Naturkatastrophen wie Überschwemmungen oder Erdrutsche sind direkte Folgen von extremen Niederschlägen. Forschende erwarten, dass mit steigenden Durchschnittstemperaturen extreme Niederschläge weiter zunehmen werden. Um sich an ein sich änderndes Klima anzupassen und frühzeitig auf Katastrophen vorbereiten zu können, sind genaue lokale und globale Informationen über den aktuellen sowie zukünftigen Wasserkreislauf unerlässlich. „Niederschläge sind sowohl räumlich als auch zeitlich sehr variabel und daher schwer vorherzusagen – insbesondere auf lokaler Ebene“, sagt Dr. Christian Chwala vom Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), dem Campus Alpin des KIT in Garmisch-Partenkirchen. „Deshalb wollen wir die Auflösung von Niederschlagsfeldern, wie sie zum Beispiel von globalen Klimamodellen erzeugt werden, erhöhen und damit vor allem ihre Einordnung bezüglich möglicher Bedrohungen wie Flutkatastrophen verbessern.“
Feinere Auflösung für genauere regionale Klimamodelle
Bisherige globale Klimamodelle verwenden ein Raster, das nicht fein genug ist, um die Variabilität der Niederschläge genau darzustellen. Hochaufgelöste Niederschlagskarten können nur mit extrem rechenintensiven und daher räumlich oder zeitlich begrenzten Modellen erzeugt werden. „Wir haben deshalb ein Generatives Neuronales Netz – GAN genannt – aus dem Bereich der Künstlichen Intelligenz entwickelt und es mit hochauflösenden Radarniederschlagsfeldern trainiert. Das GAN lernt dabei, wie es realistische Niederschlagsfelder und deren zeitliche Abfolge aus grob aufgelösten Daten generiert“, erklärt Luca Glawion vom IMK-IFU. „So ist das Netz in der Lage, aus den sehr grob aufgelösten Karten realistische hochaufgelöste Radarniederschlagsfilme zu erstellen.“ Diese verfeinerten Radarkarten zeigen nicht nur, wie sich Regenzellen entwickeln und bewegen, sondern rekonstruieren auch präzise die lokalen Regenstatistiken mit entsprechender Extremwertverteilung.