
Die Energiewende stellt Deutschland vor große Herausforderungen, insbesondere wenn es um die Speicherung grüner Energie geht. Während erneuerbare Quellen wie die Wind- und Sonnenenergie immer wirtschaftlicher werden, fehlt es bisher an kostengünstigen und effizienten Speichertechnologien, die das gesamte Land über längere Zeit mit grüner Energie versorgen könnten.
Wind- und Sonnenenergie Schwankungen in der Stromerzeugung
Zudem entstehen durch die fluktuierende Natur von Wind- und Sonnenenergie Schwankungen in der Stromerzeugung, so genannte Dunkelpausen, die aktuell durch den Einsatz konventioneller Kraftwerke ausgeglichen werden müssen. Das führt dazu, dass eine doppelte, energieaufwändige Infrastruktur dauerhaft instandgehalten werden muss, fossile Brennstoffe weiterhin eine wichtige Rolle spielen und damit die Umstellung auf erneuerbare Energien erschwert wird.
Vision langlebige Batterie – explizit für Langzeitspeicherung
Ein Konsortium aus Forschungseinrichtungen und den Firmen Zn2H2 GmbH und Steel PRO Maschinenbau GmbH setzt im Projekt Zn-H2 auf innovative Lösungen, grüne Energie zu speichern. Die Vision ist es, eine langlebige Batterie aufzubauen, die explizit für eine Langzeitspeicherung geeignet ist: Ausgehend von bereits bekannten Lösungen im Batteriebereich mit Zink-Anode kombinieren die Forschenden diese Technologie mit der alkalischen Wasser-Elektrolyse und entwickeln eine neuartige Speichertechnologie.
Anders als herkömmliche Lithium-Akkus sind Zink-Speicher nämlich wesentlich kostengünstiger, und verwenden leicht verfügbare Rohstoffe (Stahl, Zink, Kaliumhydroxid) und sind recycelbar. Ein weiterer Clou: Sie ermöglichen die bedarfsgerechte Produktion von Wasserstoff. Schlussendlich sollen also elektrisch aufladbare Wasserstoffspeicher entwickelt werden, die Energie in Form von metallischem Zink speichern und bedarfsgerecht Elektrizität und Wasserstoff bereitstellen.
Greenetch Fraunhofer IZM koordiniert das Projekt
Dr. Robert Hahn vom Fraunhofer IZM koordiniert das Projekt und erklärt, was auf chemischer Ebene in der Batterie passiert: „Während des Aufladens oxidiert Wasser in der Batterie zu Sauerstoff, gleichzeitig wird Zinkoxid zu metallischem Zink reduziert. Bei der bedarfsgerechten Entladung der Speicherzelle wird das Zink wieder in Zinkoxid umgewandelt. Das Wasser wird wiederum reduziert, so dass Wasserstoff erzeugt und freigesetzt wird.
Es entsteht eine einzigartige Kombination aus Batterie und Wasserstoff-Herstellung mit einem Gesamtwirkungsgrad der Stromspeicherung von 50%, womit wir die alternative und zurzeit favorisierte Power-to-Gas-Technologie doppelt übertreffen“. Da die Materialkosten weniger als ein Zehntel eines Lithium-Akkus betragen, eröffnet sich hier eine wirtschaftlich attraktive Perspektive zur Speicherung grüner Energie.
Batterie und Wasserstoff-Herstellung mit Gesamtwirkungsgrad der Stromspeicherung von 50%
Im Labor konnten die Forschenden das Grundprinzip des neuen Systems bereits unter Beweis stellen und untersuchten anhand von Einzelzellen Wirkungsgrade und die Stabilität der Ladezyklen. Nun steht der nächste Schritt an: Bis zum Jahresende soll ein Demonstrator entstehen, dessen Betriebsführung in einem Teststand erforscht wird.
Final sollen acht Zellen mit einer Kapazität von circa 12 Volt und 50 Ampere-Stunden elektrisch verbunden werden.
Acht Zellen mit Kapazität von 12 Volt und 50 Ampere-Stunden
Als kostengünstige Produktionstechnik für die großflächige Herstellung des bi-funktionalen Katalysators, an dem abwechselnd Wassersoff und Sauerstoff entsteht, demonstrieren die Forschenden die galvanische Abscheidung: Vorab wird mit Tests die Reproduzierbarkeit der Abscheidung untersucht.
Das Team am Fraunhofer IZM in Berlin ist verantwortlich für die Auslegung des Demonstrators, den Aufbau eines Teststands und die Durchführung der Zuverlässig